Доменное пр-во
Электрометаллургия
Конвертерное пр-во
Разливка стали
Популярные материалы

Влияние водорода на свойства металла

Растворимость его в стали и влияние водорода на свойства стали. H2 растворяется в стали и сплавах железа в атомарном (ионном) состоянии. Атомы (ионы) водорода благодаря своим малым размерам распределяются в промежутках между атомами железа, образуя растворы внедрения.

Растворимость водорода в железе может быть описана уравнениями:

  • 2 [H] - Н2<г>;
  • KH = Рн2/[Н]2,

Следовательно, растворимость пропорциональна корню квадратному из величины его давления. Эта закономерность была установлена Сивертсом и затем подтверждена экспериментально М. М. Карнауховым и А. Н. Морозовым, В. И. Явойским и другими исследователями. Было вместе с тем найдено, что растворимость водорода в стали зависит от температуры и скачкообразно изменяется при аллотропических превращениях (изменяется величина /КН).

Результаты исследований, приведенные в виде изобары на рис. 1, показывают , что при повышении температуры растворимость водорода в стали в общем повышается. При превращении а-железа в y-железо, а также в точке плавления растворимость водорода скачкообразно увеличивается. При переходе железа из модификации у в модификацию бета она несколько понижается.
Растворимость водорода в сталиРисунок 1. Растворимость водорода в стали при парциальном давлении H2 10,233 кН/м2 (760 мм рт. ст.) nFeO-mAl2O3

Другие элементы влияют на растворимость водорода в стали. Это влияние характеризуется параметрами взаимодействия.

Следовательно, кислород, кремний и углерод понижают растворимость H2 в жидком железе, причем особенно сильно в этом направлении действует кислород. Титан, напротив, повышает растворимость водорода в стали. Влияние других элементов (Ni, Al, Cr и др.) незначительно.

Особое значение имеет резкое понижение растворимости H2 в стали при затвердевании и дальнейшем понижении температуры. Из рис. 1 видно, что при температуре 1600° С и рН2 = 10,223 кН/м2 (760 мм рт. ст.) растворимость водорода в жидком железе равна примерно 28 см3 на 100 г, а в твердом железе при комнатной температуре она равна практически нулю. Вследствие этого во время кристаллизации H2 в значительной мере переходит в маточный раствор, что вызывает его сильную зональную ликвацию в слитке, а после затвердевания полностью выделяется из раствора в металле.

Выделение водорода происходит в пустоты металла и дефектные места решетки. Здесь атомы H2 соединяются в молекулы и он переходит в газообразное состояние.

Если объем пустот достаточно велик, как это бывает в литом металле, давление H2 в них не велико и влияние водорода на свойства стали не значительно. Если же объем пустот небольшой (например в катаном и кованом металле), водород переходит лишь в микропустоты и дефектные места решетки, где возникает высокое давление (до 1 кН/м2, или 100 кгс/мм2), отрицательно влияющее на свойства стали.

Ввиду узко локального характера высокое давление водорода в стали, даже если оно превышает предел прочности стали, само по себе не может вызвать разрушение металла, так как упруго передается на слои, следующие за микропустотой. Однако в случае приложения внешнего усилия возле микрообъемов с высоким давлением H2 возникает объемное напряженное состояние, вызывающее резкое понижение пластичности стали — водородную хрупкость. Проявляется она в виде понижения относительных сужения и удлинения, а иногда и ударной вязкости при содержании водорода более 2 см3 на 100 г и в тем большей степени, чем больше это содержание.

Источник [4] → список литературы.


Вернуться в начало раздела: Физико-химические основы плавки стали
Вернуться на главную: Черная металлургия