Доменное пр-во
Электрометаллургия
Конвертерное пр-во
Разливка стали
Популярные материалы

Основы работы индукционной тигельной печи

В индукционных печах можно переплавлять магнитную и немагнитную шихту. При плавлении немагнитной шихты ее разогрев осуществляется за счет джоулева тепла, выделяющегося при циркуляции в металле индуцируемых полем индуктора вихревых токов Фуко. Магнитные материалы нагреваются, кроме того, и за счет тепловых потерь при их перемагничивании, величина которых определяется шириной петли гистерезиса. Ферромагнитные свойства сохраняются, как известно, до точки Кюри (740—770° С).

Рассмотрим нагрев немагнитных материалов. Для упрощения представим себе шихту в виде сплошного блока цилиндрической формы, помещенного внутрь индуктора.

Поле, создаваемое соленоидом в зазоре между индуктором и цилиндром, образует цилиндрическую волну, падающую на поверхность цилиндра. Вектор напряженности магнитного поля в зазоре направлен вдоль оси цилиндра, а напряженность электрического поля направлена по касательной к поперечному сечению цилиндра. Проникающая внутрь цилиндра волна индуцирует вихревые токи прежде всего в поверхностном слое цилиндра. Эти токи циркулируют в плоскости витков индуктора в направлении, противоположном направлению тока индуктора. Токи образуют свое электромагнитное поле, также противоположное полю индуктора. Поэтому в более глубокие слои цилиндра поле индуктора проникает ослабленным и плотность тока, наводимого в более глубоких слоях, будет меньшей.
Тигельная индукционная печь

Глубина проникновения тока — это условная величина, равная расстоянию от поверхности, на котором плотность тока уменьшается в е раз по сравнению с плотностью тока у поверхности (ее — основание натуральных логарифмов, равное 2,718).

Глубина проникновения тока зависит от частоты изменения электромагнитного поля, удельного омического сопротивления и магнитной проницаемости материала.

В начале плавки основное количество тепла выделяется в поверхностном слое, и он прогревается в первую очередь. Неравномерность прогрева можно наблюдать визуально, если в высокочастотный индуктор вставить массивный блок, например, из графита.

С повышением температуры сопротивление металла увеличивается. Спустя некоторое время после начала нагрева сопротивление становится неодинаковым по сечению (максимум у поверхности), вследствие чего максимум плотности тока смещается от поверхности в глубь цилиндра. При этом в процесс прогрева вовлекаются все новые слои металла, увеличиваются глубина проникновения тока и мощность, передаваемая садке.

Неравномерность распределения плотности тока по сечению нагреваемого цилиндра значительно ускоряет нагрев, так как позволяет последовательно концентрировать в отдельных слоях высокую мощность. Если бы сила тока распределялась по всему сечению равномерно, то плотность тока и концентрация тепла были бы незначительными и для прогрева металла потребовались бы во много раз более мощные источники питания печей. Поэтому при индукционном нагреве очень большое значение имеет соотношение между глубиной проникновения тока и сечением прогреваемого блока.

Для одного и того же материала глубина проникновения тока зависит только от частоты, а это означает, что существует оптимальное соотношение между частотой и размерами твердой шихты, а также между частотой и диаметром тигля. Таким образом, для эффективного плавления одного и того же металла в индукционных печах разной емкости требуется различная частота питающего тока.

Все закономерности справедливы не только для расплавленного металла, но и для каждого отдельного куска шихты, если под d2 понимать диаметр отдельного куска. Поэтому для достижения высокого значения электрического к. п. д. печи необходимо выдерживать определенные соотношения не только между частотой тока и диаметром тигля, но и между частотой тока в индукторе, размерами и формой кусков шихты. Однако при использовании любой шихты куски надо укладывать так, чтобы при этом получался максимальным объем активного слоя.

В случае плавления магнитной шихты справедливы те же соотношения. Но в начальный период плавки магнитная шихта потребляет примерно на 40% больше мощности, чем немагнитная. При нагреве магнитной садки сильнее выражен и эффект неравномерного распределения плотности тока по сечению. Большая потребляемая мощность и более высокая концентрация тепла позволяют нагревать магнитную шихту с большей скоростью, чем немагнитную.

С повышением температуры шихты ее магнитная проницаемость уменьшается, что приводит и к уменьшению скорости нагрева. Выше точки Кюри магнитные металлы нагреваются так же, как и немагнитные.

После расплавления металл в индукционных тигельных печах находится в непрерывном движении. Движение металла вызывается действием ряда электродинамических эффектов, главным образом наличием отталкивающих усилий между проводниками с противоположным направлением токов (индуктором и садкой) и сжимающих усилий между проводниками с одинаковым направлением токов (между токопроводящими слоями садки). Электродинамические силы направлены радиально к оси цилиндра и создаваемое ими давление достигает максимума у оси цилиндра, на середине его высоты.

Под действием электродинамических усилий жидкий металл вытесняется из области с высоким давлением в места с более низким давлением, т. е. вверх и вниз, в результате чего возникает циркуляция металла.

Естественное электромагнитное перемешивание металла способствует выравниванию его температуры и состава по объему ванны и ускоряет плавку. Но при циркуляции по схеме на поверхности ванны образуется выпуклый мениск металла, шлак стекает к стенкам тигля и оголяет поверхность металла. Чтобы предотвратить это, приходится увеличивать расход шлакообразующих, что отрицательно отражается на технико-экономических показателях работы печи.

Выпуклого мениска не получается, когда уровень металла в тигле находится выше индуктора. В этом случае циркуляция не выходит на поверхность, а вблизи поверхности возникают завихрения, создающие обратный мениск, и поверхность ванны становится почти плоской. Для получения плоской поверхности индуктор делают секционным, и после расплавления металла, когда подводимую мощность можно уменьшить, верхнюю секцию отключают. Уровень металла оказывается выше включенных витков индуктора, и мениск не образуется.

Иногда интенсивность естественного перемешивания металла оказывается недостаточной для получения однородного состава. В этом случае целесообразно на время перемешивания переключить индуктор от источника питания током повышенной частоты к источнику питания током более низкой, например промышленной, частоты. При этом электродинамическое давление возрастает и усиливается циркуляция металла.


Источник [4] → список литературы.

Читайте также по этой теме:

Вернуться в начало раздела: Электропечи
Вернуться на главную: Черная металлургия